机器人技术中的安全运动规划需要已验证的空间规划,这些空间没有障碍。但是,由于其深度测量值的稀疏性,使用LiDARS获得此类环境表示是具有挑战性的。我们提出了一个学习辅助的3D激光雷达重建框架,该框架借助重叠的摄像头图像来为稀疏的激光雷达深度测量,以生成比单独使用原始liDar测量值可以实现更明确的自由空间的较密集的重建。我们使用带有编码器解码器结构的神经网络来预测密集的深度图像以及使用体积映射系统融合的深度不确定性估计。我们在使用手持式传感设备和腿部机器人捕获的现实世界室外数据集上进行实验。我们使用来自16束束激光雷达映射建筑网络的输入数据,我们的实验表明,通过我们的方法,估计的自由空间的量增加了40%以上。我们还表明,我们在合成数据集通用上训练的方法非常适合现实世界户外场景,而无需进行其他微调。最后,我们演示了运动计划任务如何从这些密集的重建中受益。
translated by 谷歌翻译
为了实现成功的实地自主权,移动机器人需要自由适应环境的变化。视觉导航系统(如视觉教学和重复(VT&R)通常会假设参考轨迹周围的空间是自由的,但如果环境受阻,则路径跟踪可能会失败,或者机器人可以与先前看不见的障碍物碰撞。在这项工作中,我们为VT&R系统提供了一个局部反应控制器,允许机器人尽管对环境进行物理变化,但是尽管环境变化。我们的控制器使用本地高程映射来计算矢量表示,并输出10 Hz导航的Twist命令。它们组合在Riemannian运动策略(RMP)控制器中,该控制器需要<2 ms以在CPU上运行。我们将我们的控制器与VT&R系统集成在内的ANYMAL COMOT,并在室内杂乱的空间和大规模地下矿井中进行了测试。我们表明,当发生诸如靠近墙壁,交叉门口或穿越狭窄的走廊时,当发生视觉跟踪时,我们的本地反应控制器保持机器人安全。视频:https://youtu.be/g_awnec5awu.
translated by 谷歌翻译
由于它可能对粮食安全,可持续性,资源利用效率,化学处理的降低以及人类努力和产量的优化,因此,自主机器人在农业中的应用正在越来越受欢迎。有了这一愿景,蓬勃发展的研究项目旨在开发一种适应性的机器人解决方案,用于精确耕作,该解决方案结合了小型自动无人驾驶飞机(UAV)(UAV)的空中调查能力以及由多功能无人驾驶的无人接地车(UGV)执行的针对性干预措施。本文概述了该项目中获得的科学和技术进步和结果。我们引入了多光谱感知算法以及空中和地面系统,用于监测农作物密度,杂草压力,作物氮营养状况,并准确地对杂草进行分类和定位。然后,我们介绍了针对我们在农业环境中机器人身份量身定制的导航和映射系统,以及用于协作映射的模块。我们最终介绍了我们在不同的现场条件和不同农作物中实施和测试的地面干预硬件,软件解决方案以及接口。我们描述了一个真正的用例,在该案例中,无人机与UGV合作以监视该领域并进行选择性喷涂而无需人工干预。
translated by 谷歌翻译
社交媒体平台已成为反社会元素的新战场,错误信息是首选的武器。事实核对组织试图在忠于其新闻流程的同时揭露尽可能多的主张,但不能应付其快速传播。我们认为,解决方案在于对事实检查生命周期的部分自动化,从而节省了需要高认知的任务的人类时间。我们提出了一个新的工作流程,以有效地检测到以前的事实检查的主张,该主张使用抽象性摘要来产生清晰的查询。然后可以在与以前事实检查的索赔集合相关的通用检索系统上执行这些查询。我们策划了一个抽象的文本摘要数据集,其中包括Twitter及其黄金摘要的嘈杂主张。结果表明,与逐字查询相比,通过使用流行的开箱即用摘要模型,通过使用流行的开箱即用摘要模型来改善2倍和3倍。我们的方法召回@5和35%和0.3的MRR,而基线值分别为10%和0.1。我们的数据集,代码和模型可公开使用:https://github.com/varadhbhatnagar/fc-claim-det/
translated by 谷歌翻译
在线模仿学习是如何最好地访问环境或准确的模拟器的问题的问题。先前的工作表明,在无限的样本制度中,匹配的确切力矩达到了与专家政策的价值等效性。但是,在有限的样本制度中,即使没有优化错误,经验差异也会导致性能差距,该差距以$ h^2 / n $的行为克隆缩放,在线时刻$ h / \ sqrt {n} $匹配,其中$ h $是地平线,$ n $是专家数据集的大小。我们介绍了重播估算的技术以减少这种经验差异:通过反复在随机模拟器中执行缓存的专家动作,我们计算了一个更平滑的专家访问分布估算以匹配的。在存在一般函数近似的情况下,我们证明了一个元定理,可以减少离线分类参数估计误差的方法差距(即学习专家策略)。在表格设置或使用线性函数近似中,我们的元定理表明,我们方法产生的性能差距达到了最佳$ \ widetilde {o} \ left(\ min(\ min({h^h^{3/2}}}} / {n} ,{h} / {\ sqrt {n}} \ right)$依赖关系,在与先前的工作相比明显弱的假设下。我们在多个连续的控制任务上实施了多个方法的多次实例化,并发现我们能够显着提高策略绩效跨各种数据集尺寸。
translated by 谷歌翻译